skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Matonoha, O"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 1, 2026
  2. Free, publicly-accessible full text available January 1, 2026
  3. null (Ed.)
    Abstract This paper is a write-up of the ideas that were presented, developed and discussed at the third International Workshop on QCD Challenges from pp to A–A, which took place in August 2019 in Lund, Sweden (Workshop link: https://indico.lucas.lu.se/event/1214/ ). The goal of the workshop was to focus on some of the open questions in the field and try to come up with concrete suggestions for how to make progress on both the experimental and theoretical sides. The paper gives a brief introduction to each topic and then summarizes the primary results. 
    more » « less
  4. Free, publicly-accessible full text available July 1, 2026
  5. The ALICE Collaboration reports measurements of the large relative transverse momentum ( k T ) component of jet substructure in p p and Pb-Pb collisions at center-of-mass energy per nucleon pair s NN = 5.02 TeV . Enhancement in the yield of such large- k T emissions in head-on Pb-Pb collisions is predicted to arise from partonic scattering with quasiparticles of the quark-gluon plasma. The analysis utilizes charged-particle jets reconstructed by the anti- k T algorithm with resolution parameter R = 0.2 in the transverse-momentum interval 60 < p T , ch , jet < 80 GeV / c . The soft drop and dynamical grooming algorithms are used to identify high transverse momentum splittings in the jet shower. Comparison of measurements in Pb-Pb and p p collisions shows medium-induced narrowing, corresponding to yield suppression of high- k T splittings, in contrast to the expectation of yield enhancement due to quasiparticle scattering. The measurements are compared to theoretical model calculations incorporating jet modification due to jet-medium interactions (“jet quenching”), both with and without quasiparticle scattering effects. These measurements provide new insight into the underlying mechanisms and theoretical modeling of jet quenching. 
    more » « less
    Free, publicly-accessible full text available July 1, 2026
  6. A<sc>bstract</sc> We report on the measurement of inclusive, non-prompt, and prompt J/ψ-hadron correlations by the ALICE Collaboration at the CERN Large Hadron Collider in pp collisions at a center-of-mass energy of 13 TeV. The correlations are studied at midrapidity (|y| <0.9) in the transverse momentum rangespT<40 GeV/cfor the J/ψand 0.15< pT<10 GeV/cand |η|<0.9 for the associated hadrons. The measurement is based on minimum bias and high multiplicity data samples corresponding to integrated luminosities ofLint= 34 nb−1andLint= 6.9 pb−1, respectively. In addition, two more data samples are employed, requiring, on top of the minimum bias condition, a threshold on the tower energy ofE= 4 and 9 GeV in the ALICE electromagnetic calorimeters, which correspond to integrated luminosities ofLint= 0.9 pb−1andLint= 8.4 pb−1, respectively. The azimuthally integrated near and away side yields of associated charged hadrons per J/ψtrigger are presented as a function of the J/ψand associated hadron transverse momentum. The measurements are discussed in comparison to PYTHIA calculations. 
    more » « less
    Free, publicly-accessible full text available July 1, 2026
  7. Abstract Atomic nuclei are self-organized, many-body quantum systems bound by strong nuclear forces within femtometre-scale space. These complex systems manifest a variety of shapes1–3, traditionally explored using non-invasive spectroscopic techniques at low energies4,5. However, at these energies, their instantaneous shapes are obscured by long-timescale quantum fluctuations, making direct observation challenging. Here we introduce the collective-flow-assisted nuclear shape-imaging method, which images the nuclear global shape by colliding them at ultrarelativistic speeds and analysing the collective response of outgoing debris. This technique captures a collision-specific snapshot of the spatial matter distribution within the nuclei, which, through the hydrodynamic expansion, imprints patterns on the particle momentum distribution observed in detectors6,7. We benchmark this method in collisions of ground-state uranium-238 nuclei, known for their elongated, axial-symmetric shape. Our findings show a large deformation with a slight deviation from axial symmetry in the nuclear ground state, aligning broadly with previous low-energy experiments. This approach offers a new method for imaging nuclear shapes, enhances our understanding of the initial conditions in high-energy collisions and addresses the important issue of nuclear structure evolution across energy scales. 
    more » « less
    Free, publicly-accessible full text available November 7, 2025
  8. Free, publicly-accessible full text available December 1, 2025